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Divalent manganese, Mn(II), plays an important role in a variety
of biological processes.1,2 Although crystallographic structures have
been useful in understanding the overall physical structures of
manganese binding sites in proteins, they are often insufficient for
understanding the electronic and chemical properties of these ions
in proteins. Electron paramagnetic resonance (EPR) spectroscopy
is one of the few techniques that can selectively detect and be used
to characterize Mn(II) ions. A Mn(II) EPR spectrum is defined by
the spin Hamiltonian

where the first term is the Zeeman interaction, the second the
electron-nuclear hyperfine interaction, and the last two terms
describe the zero-field interaction. For most Mn(II) ions, the Zeeman
and hyperfine interactions are isotropic.3 The size of the hyperfine
coupling has been related to ligand-metal covalency,4 but the
variation in their values is relatively small (<50 MHz) compared
to the zero-field interaction, which, by contrast, is anisotropic and
ranges from 0 to values greater than 10 GHz.

The zero-field interaction in powder or frozen solutions can be
determined using high-frequency high-field EPR (HFEPR). In this
case, a large magnetic field is applied so that energies of the six
electronic spin states are dominated by the Zeeman interaction
and essentially becomemsgâB wherems ) {-5/2, -3/2, -1/2,
1/2, 3/2, and 5/2}. When sufficiently low temperatures are used
(T < hν/k or 11 K at 285 GHz 10 T experiments), only thems )
-5/2 level is thermally populated and the HFEPR spectrum is
essentially of that transition (Figure S1). The zero-field para-
meters can be directly obtained from the “turning points” of such
spectra (Figure 1).

The relationship of the zero-field parametersD and E to the
chemical and physical properties of Mn(II) is poorly understood.
There are diverse views on the influence of coordination number,
ligand atom types, and symmetry on the Mn(II) zero-field
interaction.5-7 It would be interesting and useful for understanding
enzymatic chemistry to establish whether there is a direct correlation
between the zero-field parameters and the metal redox properties
since measurements ofD andE values are often more straightfor-
ward, especially for enzyme intermediates, than determination of
redox potentials. To this end, we have examined the zero-field
parameters and redox potentials of a series of closely related
complexes, Mn(II)(4′-X-terpy)2, where X’s are substituents that have
varied electron-donating/withdrawing capacities (Scheme 1 and
Figure S2).8-10 The high-field EPR 4.2 K spectra of these complexes
in acetonitrile solution are shown in Figure 1. The greater than

expected intensity of the six sharp lines arising from thems ) -1/2
f 1/2 transitions indicated that small amounts of complexes
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Figure 1. The 4.2 K 279 GHz HFEPR spectra of the 2 mM acetonitrile
solutions of Mn(4′-X-terpy)2 complexes containing 100 mM tetrabutylam-
monium hexafluorophosphate: the experimental spectrum (black), simula-
tion (red), and residual (green). In some cases, the sharp six lines in the
center of the spectrum arise from thems ) -1/2 f 1/2 transitions and
have been artificially truncated. The labels at the left correspond to the X
substituent in Scheme 1.

Scheme 1. MnTerpy (left) and MnBIAP (right) Complexes
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decomposed in solution. The spectra were fitted based on the above
spin Hamiltonian in order to obtain the zero-field parameters. For
all of the complexes, the zero-fieldD parameters were found to be
negative. The simulations also indicated the presence of a minority
species for which the zero-field interaction was slightly larger. The
same solutions used to record the HFEPR spectra were also used
for redox potential measurements.11

There was good reason to believe that the Mn(II)/Mn(III) redox
potential and Mn(II) zero-field interaction might be correlated. It
has been shown that the zero-field interaction is sensitive to local
electrostatic interactions that presumably would also affect the redox
potentials.12 The data shown in Figure 3 demonstrate that the
relationship is close to linear forD but nearly invariant with respect
to E. Density functional calculations were performed to obtain
relevant charge densities: first the optimized structures were
obtained using Gaussian0313 and the B3LYP/LANL2DZ hybrid
density functional and basis-set combination and the Mulliken
charges from subsequent B3LYP/6-311G calculations.14-21 The
Mulliken charges of the central terpy nitrogens were found to be
linearly related to the zero-field interaction (Figure 4). This
correlation implied that the electrochemistry of the Mn(II) was also
associated with the charge on these nitrogen atoms.

We tested the generality of these relationships by examining a
second set of Mn(II) complexes formed withN,N-bis(2-ethyl-5-
methylimidazol-4-ylmethyl)aminopropane (BIAP).22-24 This ligand
provided three nitrogen donor atoms, one from a tertiary amine
and two from imidazole moieties. In addition, three oxygen atoms
from a water molecule and two benzoic acids that werepara-
substituted with OCH3, CH3, H, Cl, and NO2 (Scheme 1) completed
the metal coordination sphere. The powder HFEPR spectra of these
complexes are shown in Figure 2. The spectrum of the H-substituted

complex appeared to be composed of two overlapping components,
while the Cl-substituted derivative appeared to have significant
contributions from a contaminating species with markedly smaller
zero-field interaction (Figure 2). In contrast, the frozen acetonitrile
solution spectra in all but the Cl-substituted complex were much
narrower and essentially featureless (Figure S4). This indicated that
the BIAP zero-field interactions in frozen solutions were signifi-
cantly smaller but, at the same time, more distributed than in
crystals. Redox measurements also yielded nonideal data. This
strongly suggested that dissolution of the BIAP complexes was
accompanied by considerable changes and disorder in the ligand
sphere, rendering comparisons between solution zero-field interac-
tion and redox potential of these complexes far less meaningful
than for the terpy complexes. Nonetheless, for all of the BIAP
complexes, it was possible to obtain accurate estimates of the zero-
field interaction in the solid state by fitting the extreme edges of
the powder spectra. In contrast to the Mnterpy complexes in

Figure 2. The 4.2 K 279 GHz HFEPR spectrum of powder MnBIAP
samples (black) and simulations (red). The labels at the left correspond to
the X substituent in Scheme 1.

Figure 3. Correlation between the Mn(II) zero-fieldD (black) andE (red)
parameters and the Mn(II)/Mn(III) redox potentials of Mnterpy complexes.
The dashed lines are linear regression fits.

Figure 4. Relationship between magnitudes of the Mn(II) zero-field
interaction and the B3LYP/6-311G Mulliken 4′-nitrogen charges of the
Mnterpy complexes (left scale and circles) and the carboxylate oxygen
charges of the MnBIAP complexes (right scale, squares). The dashed lines
are linear regression fits.
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solution, all of the BIAP complexes had positiveD values and their
E parameters varied significantly with the substituent. The sign of
D was also readily apparent from the observation that all the BIAP
spectra extended further to the high-field side of the magnetic field
position corresponding togiso than to the low-field side. The
magnitude of the BIAP zero-field interaction, as measured by the
quantity (D2 + 3E2)1/2 correlated linearly with the charge of the
ligating atom most affected by the substitution, the carboxyl oxygen
atom (Figure 4). Likewise, the frozen solution Mnterpy zero-field
interaction depended linearly on the center nitrogen charge. Since
the same linear response was seen for two very different ligand
spheres, we conclude that it is likely to be a general property of
Mn(II) complexes. As the relationship between electron-donating
capacity of a substituent and redox potential also appears to be
general,25-27 it is likely that the variation in the redox potentials of
related Mn(II) complexes will be mirrored in their zero-field
interactions in a linear manner as is the case for the Mnterpy
complexes.

These conclusions are especially noteworthy since a number of
Mn(II) protein centers with histidine and carboxylic acid ligands
have very similar ligand spheres to that of the BIAP complexes.
For example, the significant differences of 0.5 and 0.1 GHz inE
and D values, respectively, between manganese and manganese
reconstituted iron superoxide dismutases fromE. coli28 may reflect
the large difference of>0.7 V in redox potentials determined by
Miller.29

Mn(II) zero-field interactions will be a new way of looking at
manganese binding proteins. This approach can semiquantitatively
estimate differences in potentials of intermediates that can be
trapped and examined by HFEPR and that may not be sufficiently
stable for direct measurements using traditional redox techniques.
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